
User Guide for DYCORS Algorithm – Python

Juliane Müller
email: juliane.mueller2901@gmail.com

June 18, 2014

Copyright (C) 2014 Juliane Müller. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled ”GNU Free Documentation
License”.

1 Introduction

This user guide accompanies the DYCORS algorithm [2] for global optimization problems. The
algorithm attempts to find accurate solutions for minimization problems of the following form:

min f(x), subject to −∞ < xl
i ≤ xi ≤ xu

i <∞, i = 1, . . . , d, (1)

where f(x) is a computationally expensive objective function (often a time consuming simulation
model) whose analytical description is not available (black box). Considered are box-constrained
optimization problems, i.e. only lower (xl

i) and upper (xu
i ) variable bounds exist for xi ∈ R, i =

1, . . . , d, where d is the problem dimension. There are no other constraints. The major difference
between DYCORS and Stochastic RBF (see the codes for StochasticRBF by the same author) is
that DYCORS is more suitable for large dimensional problems (> 30 dimensions) since it does not
perturb all variables of the best point found so far in order to create candidate points, but rather
each variable is perturbed with probability

P (n) = p0

[
1− log(n−m + 1)

log(Nmax −m)

]
, (2)

for all m ≤ n ≤ Nmax, and where m is the number of points in the initial experimental design,
p0 = min(1, 20/d), n is the iteration number, and Nmax is the maximum number of allowed
evaluations for the optimization. Hence, the probability of perturbation for each variable decreases
as the optimization advances (as n grows). It is ensured that at least one variable is perturbed.

Note that for problems with computationally cheap function evaluations the algorithm may not be
very efficient since in that case the computational overhead from the optimization routine itself will
be more than the overhead from doing function evaluations. Surrogate models are intended to be
used when a single function evaluation takes from several minutes to several hours or more. When
reading this manual it is recommended to simultaneously take a look at the code and to try out the
examples. It is assumed that the user is familiar with the paper on whose content this implementation
is based:

• R.G. Regis and C.A. Shoemaker. Combining Radial Basis Function Surrogates and Dynamic
Coordinate Search in High-Dimensional Expensive Black-Box Optimization. Engineering Op-
timization, Vol. 45, Issue 5, pp. 529-555, 2013.

This paper should be cited and the codes should be acknowledged (giving its link) whenever they
are used to generate results for the user’s own research. The user is urged to read the paper before
continuing with the manual since it helps understanding the following descriptions.

1



The author of this Python implementation is

• J. Müller, juliane.mueller2901@gmail.com

This implementation contains the option for doing several function evaluations in parallel (in
addition to the option of doing one evaluation at a time).

The code is set up such that the user only has to define his/her optimization problem in a Python
file (see Section 6.1). Additional input such as the maximum number of allowed function evaluations,
the number of trials, an indication if the results should be plotted, and the number of function
evaluations to be done in every iteration are optional, and if not given by the user, default values
are assigned (see Section 6).

This document is structured as follows. In Section 2 the general surrogate model algorithm is
described. The installation of the algorithm is described in Section 3. The dependencies of the
single functions in the code are shown in Section 4. Section 5 briefly describes the main function
DYCORS.m. Section 6 describes the options for the input arguments of the main function and
contains an example. The elements of the saved results are described in Section 7.

Finally, if you have any questions and recommendations, or if you encounter any bugs, please feel
free to contact me at the email address juliane.mueller2901@gmail.com.

2 Surrogate Model Algorithms

Surrogate models (also known as response surfaces or metamodels) are used in the optimization algo-
rithms to approximate expensive simulation models [1]. During the optimization phase information
from the surrogate model is used in order to guide the search for improved solutions. Using the
surrogate model instead of the true simulation model reduces the computation time considerably.
Most surrogate model algorithms consist of the same steps as shown in the algorithm below.

Algorithm General Surrogate model Algorithm

1. Generate an initial experimental design.

2. Do the costly function evaluations at the points generated in Step 1.

3. Fit a response surface to the data generated in Steps 1 and 2.

4. Use the response surface to predict the objective function values at unsampled points in the
variable domain to decide where to do the next expensive function evaluation.

5. Do the expensive function evaluation at the point(s) selected in Step 4.

6. Use the new data point(s) to update the surrogate model.

7. Iterate through Steps 4 to 6 until the stopping criterion has been met.

Typically used stopping criteria are a maximum number of allowed function evaluations (adopted
in this implementation), a maximum allowed CPU time, or a maximum number of failed iterative
improvement trials.

3 Installation

Required Enviroment:

• Python interpreter 2.7.3 (http://www.python.org/download/releases/2.7.3/)

• NumPy 1.8.0 (http://www.scipy.org/Download)

• matplotlab 1.2.0 (http://matplotlib.org/)

2

mailto:juliane.mueller2901@gmail.com
mailto:juliane.mueller2901@gmail.com
http://www.python.org/download/releases/2.7.3/
http://www.scipy.org/Download
http://matplotlib.org/


Note: matplotlab 1.2.0 may require NumPy version above 1.5.0

Download the file DYCORS py.zip and unzip it. Open terminal and change directory to the DY-
CORS py folder. You can try to run DYCORS as a demo script. In the command prompt, type

$: python DYCORS.py

To run the program as a function call, you can try this:

$: python

>>> from DYCORS import DYCORS

>>> DYCORS(’datainput_hartman3’,200,3,1,1)

You can also use it as a function in your own program by importing the DY CORS module and
calling the DY CORS function in the same way as above.

4 Code Structure

The structure of the code is outlined here. The module at the highest level (DYCORS.py) is
the function that has to be called by the user. The subtrees indicate dependencies between the
subfunctions.

DYCORS.py

DYCORSrestartManager.py

DYCORSrestart.py

SLHDstandard.py

DYCORS opt.py

InitialRBFMatrices.py

phi.py

Minimize Merit Function.py

ComputeRBF.py

phi.py

phi.py

One important module not included in the above tree is utility.py. The module utility.py is imported
by every module above and depends only on NumPy. Three important data structures, myExcep-
tion, Data, Solution, are defined in utility.py. The module utility.py is highly recommended to look
at for the user when defining an own optimization problem. Alternatively, look at the example
datainput hartman3.py for an example of how to define a problem.

5 The Main File DYCORS.py

The module from which to run the algorithm is DYCORS.py. The file expects several inputs (see
Section 6) of which only the first one is mandatory. The algorithm starts by checking if the input is
correct and assigns default values to variables that have not been set by the user. If any mandatory
input data is missing or incorrect, the algorithm terminates with an error message indicating where
the problem may be. Parameters, such as the type of the used RBF model, the corresponding
polynomial tail, and the number of candidate points, are set. After the optimization finished, a plot
of the results is generated (if so desired by the user). The algorithm saves the results in the file
Results.data.

6 Input

The main file DYCORS.py requires several input arguments:

DYCORS(data file, maxeval, Ntrials, PlotResult, NumberNewSamples)

3



See Table 1) for details. Only the first argument is mandatory to run the algorithm. If no input is
given for the remaining arguments, default values are used.

Table 1: Input parameters

Input Description

data file string with name of file containing optimization problem data (mandatory!)
maxeval positive integer defining maximum number of allowed function evaluations (de-

fault 20 · d, d =dimension), must be larger than 2(d + 1)
Ntrials positive integer defining the number of times the algorithm is executed for the

given problem (default 1)
PlotResult 0 = no plot; 1 = plot (default 1)
NumberNewSamples positive integer defining the number of points selected in every iteration of the

algorithm for doing expensive simulation (default 1)

6.1 Input data file

The data file contains all the necessary problem information. See for example the file
datainput hartman3.py. The data file must define a function with the same name as the data file.
This function has no input argument, and one output argument (the structure variable Data). An
object of the Data structure must be defined and must contain the information shown on Table 2.
You can also refer to utility.py to find the required fields in the Data object. The Data structure also
provides a function validation to check whether the user-given dimension and the lower/upper bounds
are valid.

Table 2: Contents of data file

Variable Description

Data.xlow variable lower bounds, row vector with d (=dimension) entries
Data.xup variable upper bounds, row vector with d (=dimension) entries
Data.dim problem dimension, positive integer
Data.objfunction handle to objective function/simulation model, must return a scalar value

6.2 Input Ntrials

The input Ntrials indicates how often DYCORS should be run for the same problem. The reason for
running the algorithm more than once for the same problem is the random component when creating
the initial experimental design and when generating candidate points. In order to average out the
effect of these random components, several trials should be made. However, for computationally
expensive problems this might not be possible due to the required computation time for doing the
expensive function evaluations. Hence, for most application problems, Ntrials =1 is a reasonable
choice.

6.3 Input PlotResult

If set to 1 (or any value different from 0), a plot of the best objective function value averaged over all
trials after a given number of function evaluations is made. This allows the user to see the progress
of the algorithm and assess convergence.

6.4 Input NumberNewSamples

The variable NumberNewSamples indicates how many points are to be selected in every iteration of
the algorithm for doing expensive function evaluations. If NumberNewSamples is larger than one,

4



then the function evaluations are done in parallel. Note that the objective function values for the
points in the initial experimental design are in this implementation computed iteratively.

6.5 Input Example

The following example executes the DYCORS algorithm for finding the minimum of the three-
dimensional Hartmann function defined in the file datainput hartman3.py. The maximum number
of function evaluations is set to 200, Ntrials is set to 3 (the algorithm is started 3 times for the prob-
lem, and each trial has a different seed for the random number generator). PlotResult is set to 1 in
order to illustrate the progress of the objective function value vs. the number of function evaluations,
and NumberNewSamples is set to 2, i.e. in every iteration two new points are selected and the objective
function values of these two points are computed simultaneously. The user is encouraged to try out
the example by typing into the python command prompt (make sure the current directory is in the
folder):

>> DYCORS(’datainput_hartman3’,200,3,1,2)

Note that in the command window the iteration number and the number of function evaluations
done so far is shown. The plot of the average objective function value vs. the number of function
evaluations should look similar to the graph in Figure 1.

0 50 100 150 200
Number Of Function Evaluations

−4.0

−3.8

−3.6

−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

A
ve

ra
g
e 

B
es

t 
O

b
je

ct
iv

e 
Fu

n
ct

io
n
 V

al
u
e 

In
 3

 T
ri

al
s

Figure 1: Average objective function value vs. number of function evaluations.

5



7 Results

The algorithm saves the results of the optimization to the file Results.data. The results are written
to the file by cPickle in Python standard library, refer to http://docs.python.org/2/library/

pickle.html if you are not familiar with python Pickle. cPickle uses exactly the same interface as
Pickle, but is implemented in language C, which makes it faster than Pickle.

To load the results to your python program, you can also use cPickle. In python command prompt
or your own program:

>> import cPickle as p

>> Solution = p.load(open(’Results.data’))

If the algorithm has not been interrupted (e.g. by pressing CTRL+C), the following elements are
contained in the saved Solution structure (see Table 3). You can also refer to utility.py to find the
elements of the Solution structure.

Table 3: Saved Solution structure elements

Elements Description

Solution.BestPoints (Ntrials×d) matrix with best point found in each trial of the algo-
rithm

Solution.BestValues (Ntrials×1) matrix with best objective function value found in
each trial of the algorithm

Solution.NumFuncEval (Ntrials×1) matrix with number of function evaluations in each
trial

Solution.AvgFuncEvalTime (Ntrials×1) matrix with average time needed for evaluating the
objective function in each trial

Solution.FuncVal (maxeval × Ntrials) matrix with objective function values in every
trial (ith column corresponds to ith trial)

Solution.DMatrix (maxeval ×d× Ntrials) matrix with points where objective function
has been evaluated in each trial. Third dimension corresponds to
trial number

Solution.NumberOfRestarts (Ntrials × 1) matrix with number of optimization restarts in each
trial. The optimization reboots whenever a local optimum has
been encountered and if there is a budget of function evaluations
left.

8 Exception Handling

All the errors in this program are handled by raising an object of the structure myException. You can
refer to utility.py for the declaration and definition of the myException structure. The data structure
contains one string member named msg as message. All the exceptions in this program are handled
in DYCORS from DYCORS.py, and messages are printed to the command prompt. You can also use
myException in your program by importing the utility module.

9 GNU Free Documentation License

This is part of the “User Guide for DYCORS Algorithm – Python”
Copyright (C) 2014 Juliane Müller.
For copying conditions see the GNU Free Documentation License in the file FDL.txt.
You should have received a copy of the GNU Free Documentation License along with this manual. If
not, see http://www.gnu.org/licenses/#FDL.

6

http://docs.python.org/2/library/pickle.html
http://docs.python.org/2/library/pickle.html
http://www.gnu.org/licenses/#FDL


References

[1] A.J. Booker, J.E. Dennis Jr, P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trosset. A rigorous
framework for optimization of expensive functions by surrogates. Structural Multidisciplinary
Optimization, 17:1–13, 1999.

[2] R.G. Regis and C.A. Shoemaker. Combining radial basis function surrogates and dynamic coor-
dinate search in high-dimensional expensive black-box optimization. Engineering Optimization,
45:529–555, 2013.

7


	Introduction
	Surrogate Model Algorithms
	Installation
	Code Structure
	The Main File DYCORS.py
	Input
	Input data_file
	Input Ntrials
	Input PlotResult
	Input NumberNewSamples
	Input Example

	Results
	Exception Handling
	GNU Free Documentation License

